
JWST Astronomy Data Analysis Tools
Roadmap Documentation

Release 0.1

Henry Ferguson, Perry Greenfield, and Alberto Conti

October 28, 2016

Contents

1 Executive Summary 3

2 The vision 5

3 Guiding principles 7
3.1 Open Source Software . 7
3.2 Easy to install . 8
3.3 Well documented . 8
3.4 Easy to extend . 9
3.5 Multiple interfaces . 9
3.6 Stable, widely adopted languages . 10
3.7 Stable, widely adopted libraries . 10
3.8 Leverage existing codes & algorithms . 11

4 Why do we need new tools? 13
4.1 Make science more efficient . 13
4.2 Remove scientist dependency on IRAF . 13
4.3 Modern programming language . 14
4.4 Make better use of community code . 14
4.5 Modern algorithms where relevant . 15
4.6 Leverage advances in computer hardware . 15

5 Science Use Cases 17
5.1 Faint Galaxies . 17
5.2 Infrared Slit Spectroscopy of Galactic Objects . 17
5.3 Imaging Young Stellar Objects in the Magellanic Clouds . 20
5.4 Need more use cases . 20

6 Technologies and Infrastructure 21
6.1 Data Formats . 21
6.2 Data Abstraction . 22
6.3 Parameter Handling . 23
6.4 Scientific and Numerical Libraries . 23
6.5 Physical Units and Constants . 24
6.6 Interprocess Communications . 24
6.7 Multiprocessing . 24
6.8 Special-Purpose Hardware . 25
6.9 GUI Frameworks . 25
6.10 Software Distribution . 25

i

6.11 Documentation . 26
6.12 Testing . 26
6.13 Graphics and Image Displays . 27

7 Architecture 29

8 The Computational Toolbox 31
8.1 General-purpose multi-dimensional Array Analysis tools . 32
8.2 Imaging . 34
8.3 Spectra and Spectral Extraction . 35
8.4 3D Spectroscopy . 38
8.5 Source extraction, morphology and photometry . 42
8.6 Simulation . 43
8.7 Other tools . 44

9 Graphics and Visualization 47
9.1 2D image display . 47
9.2 3D image display . 47
9.3 Interactive 2D & 3D graphics . 48
9.4 Publication-quality graphics . 49
9.5 Easy-to-construct widgets . 49
9.6 Easy-to-construct web graphics . 49

10 Development Timeline 51

11 Indices and tables 53

ii

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

abstract

author Henry Ferguson, Perry Greenfield, and Alberto Conti

date 30 June 2013

The purpose of this document is to provide a roadmap for developing the software tools that as-
tronomers need for going from pipeline-reduced data to scientific publications. The document looks
at the process of analyzing data for several different science cases, and looks at existing tools in IRAF
to identify the highest priorities for new tool development or for porting of existing algorithms to a
modern python environment. For the most part, the numerical computations will be coded in Python
and incorporated into astropy. Many of the tools will have broad applicability beyond JWST, so it
makes sense for the code to be open source and the development to be a broad community effort.
This roadmap, while geared toward JWST, is intended to foster a community dialog for the evolution
of these software tools.

Contents:

Contents 1

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

2 Contents

CHAPTER 1

Executive Summary

This is a brief overview of the document.

3

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

4 Chapter 1. Executive Summary

CHAPTER 2

The vision

The overall vision of the data analysis tools effort is the following:

• To ensure that astronomers are equipped with software tools to analyze and interpret JWST data efficiently right
from the start of the mission.

• To reduce the necessity for astronomers to write data-analysis software.

• To make it easier to do so when necessary.

• To provide a rich set of modular software tools upn which to build

• To make it easy to share & re-use code.

• To improve repeatability of scientific results.

The expected users of these tools are HST and JWST observers, and astronomers working on similar kinds of data
from other facilities. While there is some overlap with tools developed for X-ray and radio astronomy, the primary
focus is on UV, Optical and IR observations. The main focus is on “post-pipeline” analysis of already-calibrated data,
but the essential building blocks of most standard calibration pipelines are included.

5

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

6 Chapter 2. The vision

CHAPTER 3

Guiding principles

The following are guiding principles for developing this suite of software tools. In this section, we describe both
principle, the rationale for it, and the specific choice that we have made (or are considering) to respond to that guiding
principle. Briefly, the guiding principles are:

1. Open source software

2. Easy to install

3. Well documented

4. Easy to extend

5. Multiple interfaces

6. Built on stable, widely adopted languages

7. Built on stable, widely adopted code libraries

8. Leverage existing codes and algorithms.

These principles are by and large what distinguish code intended to serve a broad community from code written by
most individual astronomers for their own day-to-day research.

We shall consider each principle in turn.

3.1 Open Source Software

To ensure the repeatibility of modern scientific results, it is important that the main computational code (not just the
description of the algorithms) be available to researchers. Repeatability should not mean re-investing hundreds of
man-years of effort to reproduce a chain of analysis, when the code could be inspected and tested by independent
researchers. Sometimes the error in a scientific finding is not the result of a deep error of scientific judgment, but
rather a simple typo in computer code. The guiding principle for the Data Analysis Tools is that all of the source
code for the core numerical computations should be open source. It is less important that all of the code for GUI
interfaces, image displays, and interprocess communication be open source. Where practical, however, we will adopt
open-source solutions in preference to closed-source solutions.

The current plan is to closely link the development of the tools described here to the open-source project astropy.
The concept is that of the tools will become a part of the astropy core distribution, and work seamlessly with code
contributed to astropy from the rest of the community.

7

http://www.astropy.org

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

3.1.1 Licensing

The term open source can mean different things to different people. In the context of this roadmap, it means the
following:

• Access to the source code;

• The right to make copies and distribute those copies without unreasonable restrictions;

• The right to make changes and distribute those changes without unreasonable restrictions.

The commonly agreed-upon reasonable restriction is that the source code and any binary redistribution must retain
the copyright notice and the original liability disclaimer.

There are a variety of open-source software licenses, with various pros and cons. The current plan is to adopt the
3-clause BSD-style license used for astropy. This license is compatible with most GPL-style licenses.

3.2 Easy to install

With many astronomers having to do their own system administration, it is important to make the software easy to
install on the most commonly used computing platforms. This suggests the following high-level requirements:

1. A personal installation should be possible without system-administrator privileges

2. A multi-user shared installation should be possible with system-administrator privileges

3. The installation package should include all of the major library dependencies

(a) The installation should not break or overwrite previously-installed versions of these libraries

4. The software should have the ability to check if is up to date

It is worth commenting that ease of installation does not preclude setting up virtual machines, either on the user’s
own platform or in the cloud. Indeed, if the installation procedure fulfills the goals above, setting up a virtual machine
would simply layer some steps on top to provide all of the OS and programming-language infrastructure. While virtual
machines are a very interesting way of making computing available to the community, we do not envision that as our
primary method for providing access to the software.

3.3 Well documented

Excellent documentation is essential if the code is to fulfill the vision of being easy to use, share, and extend. The
following are specific forms of documentation:

1. User guides

2. Cookbooks and tutorials

3. Help command or help buttons

4. Coding reference guide or API documentation

5. Comments in the source code

In general, documentation should be available in the browser either on the web or by pointing the browser to the
local documentation repository, and the same documentation should be available in pdf. There have been significant
advances in the past 5 years in the ease of generating user and API documentation and presenting it in multiple formats.
Our current plan is to use the Sphinx documentation generator to accomplish this.

The use of docstrings in python makes providing help easy, and the same text is easily incorporated into the user guide.
This is especially helpful for the Application Programming Interface (API) documentation.

8 Chapter 3. Guiding principles

http://opensource.org/licenses
http://opensource.org/licenses/BSD-3-Clause
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://sphinx-doc.org

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

User guides provide a brief summary of each tool, describing the computational algorithm and how to use it. Tutorials
and cookbooks provide worked examples, often chaining together different tasks with discussion of the rationale
behind each step. Tutorials can be effective in the form of videos or ipython notebooks.

3.4 Easy to extend

A typical workflow for an astronomer often starts with running a sequence of tasks one-by-one on a specific data set,
tuning the adjustable parameters of each task to perfect the data processing. Once that is accomplished, the astronomer
will often want to chain these tasks together, possibly with some extra code to set some of the parameters or follow
some branch based on some property of the specific data. It is extremely important that the tools be developed in a
way to facilitate this kind of work flow. This implies the following goals for the data-analysis tools:

1. They should be modular

2. They should provide consistent APIs

3. They should provide easy-to-use libraries

Being modular is somewhat hard to achieve. If the tasks are too primitive, then there are too many steps needed
to chain them together. If they are too complex, then one ends up with a massive user guide to describe all of the
adjustable parameters or various kinds of I/O. An example of non-modular code (from the perspective of most users)
is the popular faint-galaxy photometry package SExtractor, which (for example) requires the user to re-run the source
detection every time one changes any input parameter even if the change has nothing to do with source detection
step. The user guide is excellent, and there is even an excellent SExtractor for dummies guide. But most astronomers
won’t get in and modify the code itself because it is too intimidating. The C code itself is reasonably modular, but
the individual steps have not been exposed to be tweaked and chained together in different ways. A more modular
approach is exemplified by the relatively new scikit-image, which provides a set of lower-level image-segmentation
and image-morphology tasks and a way to link then together in a pipeline.

The guiding principle for the JWST data analysis tools is to build the complex tasks in a transparent, well-documented
way around the more primitive modules, and make it easy for astronomers to modify a module or chain the modules
together in a different way.

Providing consistent APIs means that modules that do similar things should have a similar calling sequence. This
is also somewhat hard to achieve. Generally speaking it means adopting some common naming conventions for
parameters, and common method naming within classes that have similar purposes.

If the code is modular and has consistent APIs, then providing easy-to-use libraries means packaging the different
modules in a sensible way and providing good documentation. This is also somewhat of a challenge to achieve,
especially if the libraries incorporate community-generated code.

3.5 Multiple interfaces

In developing the data analysis tools, a guiding principle is that the basic numerical algorithms should be available
through multiple interfaces:

1. Via the command line

2. Via a scripting interface

And that the scripting interface should support calling the same routines from:

1. Various GUI interfaces

2. Client-server interfaces

3.4. Easy to extend 9

http://www.youtube.com/watch?v=DNRJwENqEUY
http://nbviewer.ipython.org/urls/raw.github.com/spacetelescope/scientific-python-training-2012/master/lecture_notebooks/PSF_Photometry_Process.ipynb
http://www.astromatic.net/software/sextractor
http://astroa.physics.metu.edu.tr/MANUALS/sextractor/Guide2source_extractor.pdf
http://scikit-image.org

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

Most astronomers are comfortable working with tasks at the command-line level (even if that command line is within
an environment like IRAF or IDL). Most astronomers are also accustomed to chaining tasks together in a scripting
language. The software will use python as the scripting language.

As the number of parameters grows or the level of interactivity grows, it is important to have graphical user interfaces
(GUIs). These usually interact with other processes via events, and event-handlers which trigger calls to a specific
subroutine. A goal for the JWST data analysis tools is to segregate the numerical computations from the GUI so that
multiple GUIs can access the same code, and so that the same code that is feeding the GUIs can be used by astronomers
in their scripts. (This was not the case, for example, with the Java-based HST Exposure Time Calculators.) The
challenge to enabling multiple GUIs is to develop a well-documented GUI abstraction layer.

It is becoming increasingly common for astronomers or astronomical institutions to provide web services that involve
some computation. A goal is to make it easy to use the data analysis tools to build such services on the server side.
This should be straightforward.

It is not a goal make the numerical-computation portion of the software compatible with client-side computing in the
browser. Most of the computations are too complex for this to be practical, and the numerical libraries to support this
are generally lacking. However, the concept of developing GUIs within the browser is very appealing.

3.6 Stable, widely adopted languages

There is a strong tension between the desire for a stable computing platforming and the desire for a platform that
incorporates the latest cutting-edge computational developments. This roadmap aims for a happy medium by choosing
languages that are widely used in science – not just astronomy – and are also widely used outside of the sciences.

1. C

2. Python

3. Javascript (for browser interfaces but not for heavy numerical computation)

All three languages are in the top 10 of the TIOBE index of programming language popularity and are considered
mainstream. All three are very popular outside of science based on metrics such as the number job advertisements or
searches for language tutorials, popularity on GITHub and Stack Overflow, or popularity in a variety of other metrics.
This is not to say these languages are better or worse than others, simply that they are safe choices and are likely to
have a large developer community for at least the next decade. In contrast, the scripting languages used by R, IRAF,
IDL, and MATLAB are unique to those environments, making for a smaller communities of software developers, less
open-source code, and less community-based online support.

The general strategy will be to code as much as possible in Python, moving to C when it offers significant performances
advantages, and using Javascript only for browser interfaces.

3.7 Stable, widely adopted libraries

The numerical and scientific libraries available for Python and C are substantial. For python, the code will leverage
the many developer-years invested in the following packages:

1. numpy – The standard python array-manipulation package

2. scipy – Scientific, numerical and statistical libraries

3. matplotlib – 2-D (and some 3D) graphics

4. astropy – Astronomy-oriented tasks

5. ipython and ipython notebook – user interfaces

6. ConfigObj – configuration file handling

10 Chapter 3. Guiding principles

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://jobstractor.com/monthly-stats
https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language
http://redmonk.com/sogrady/2013/02/28/language-rankings-1-13/
http://langpop.com

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

For C, we plan to adopt the following libraries:

1. CFITSIO?

2. What else?

There are a variety of other libraries under development, which may or may not be useful for the Astronomy Tools
development. These will be discussed under Technologies and Infrastructure.

We expect that many if not most of the Data Analysis tools developed in this roadmap will be part of astropy.

3.8 Leverage existing codes & algorithms

Where practical, we will re-use existing code or algorithms. For IDL and IRAF, this generally means trying to draw
from the algorithms rather than the code. For python code, the general strategy will be to try to get it incorporated into
astropy and up to the astropy standards for configuration control and documentation.

3.8. Leverage existing codes & algorithms 11

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

12 Chapter 3. Guiding principles

CHAPTER 4

Why do we need new tools?

There are a variety of reasons why a development effort is needed for data analysis tools for JWST. First and foremost,
it is important to reduce the amount of time between receipt of the data and achieving the scientific result. Shortening
this cycle is incredibly important because of JWST’s limited lifetime.

4.1 Make science more efficient

Most astronomers spend large amounts of time writing computer code (usually scripts) to manipulate, view, and
analyze data. A set of modern, well-documented tools can reduce this coding burden and speed up the process of
converting data into scientific knowledge. If a piece of code is re-used by more than one astronomer, there is savings
of a factor of two in development cost per astronomer-hour, minus the time spent training the second astronomer in
how to use the code. Since the funding for astronomers and science-software development come from the same source,
this is an instant savings, and basically translates to more science per dollar. The data-analysis tools described here
will be useful to hundreds of astronomers, so even counting time spent writing documentation and training people in
the use, the investment will be worthwhile – provided that the tools are actually tools that astronomers want to use
(hence the importance of community engagement in their development).

There also is a huge advantage to be gained from providing tools that work well with a modern scripting language.
This reduces the time time wasted by astronomers when performing repetitive tasks with tools that don’t allow easy
automation.

There are specific tools that are either non-existent in the community, or nowhere near at the state of maturity needed
for JWST – e.g. tools for support of 3D spectroscopy, tools for dealing with JWST error arrays and WCS information,
tools for simulating JWST data, and tools for simultaneously using data from HST, JWST, ALMA, and other facilities
in a seamless and statistically rigorous fashion.

4.2 Remove scientist dependency on IRAF

It is widely recognized that continuing to develop software based on core IRAF libraries, which are largely written in
SPP and CL, two languages that have no community outside of IRAF (and barebones support within the community),
would be inefficient and costly in the long run. We need a graceful way to retire CL, SPP, and dependencies on
core IRAF. (The extensive set of high-level analysis tools written in SPP, together with the relatively large number of
astronomers that still use the CL for IRAF scripting make this a challenge.)

In a sense, the astronomical community is encumbered with a technical debt in IRAF. Forcing the JWST scientific
community to rely on that platform for day-to-day their data analysis and visualization coding makes no long-term
economic sense. Indeed, IRAF core development has been starved of resources over the past few years, making it even
more obsolete relative to other options. Paying down the debt requires investment (in real dollars, or FTE), but will
pay off in the long run in greater science efficiency.

13

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

STScI developed PyRAF as a step in this evolution. Pyraf brought more powerful scripting, error handling, and array-
manipulation capabilities, better interoperability with other languages, and access to a growing body of open-source
scientific libraries. Partly as a result of this, a growing fraction of astronomers entering the field are using the python
language as a central part of their software toolbox. For that generation, the transition away from IRAF entirely should
be relatively painless once some of the core functionality is replaced.

4.3 Modern programming language

Programming languages continue to evolve. Modern languages have evolved to keep up with changes in computer
architectures and changes in coding paradigms. Choosing popular languages like C and Python helps ensure that the
language will keep up with the changes in computer hardware. For IRAF, the burden of making those underlying
changes falls entirely on the astronomical community, for IDL or MATLAB it largely falls on a single corporation
with its own strategic goals, creating a significant risk if the corporation changes its focus or fails to survive.

Python in particular offers the following modern features, which make it particularly attractive for writing most of the
code:

• It is a high-level, interpreted language

• It has a clean, readable syntax

• It is very portable

• It supports both object-oriented programming, and procedure-oriented programming

• It supports 64-bit architectures and threading multiple CPUs

• It has extensive error handling capabilities

• It is free and open source

• It can be extended with other languages (e.g. C)

• It has an enormous open-source development community supporting the base language and libraries (both gen-
eral and scientific).

The main practical advantage relative to the IRAF CL is that it is possible to do efficient array arithmetic like in IDL
and MATLAB, and there are extensive libraries to support scientific computations. Another significant advantage is
Python’s error trapping, which makes debugging code much easier than for the CL. The advantages relative to IDL,
Matlab, and R include the language syntax, its popularity, and the fact that it is free. Furthermore, those environments
are particularly geared toward scientific and statistical analysis and can be cumbersome when dealing with many
other common operations that often confront astronomers in their work (e.g. text processing, web development, gui
development, etc.). In terms of speed for most numerical computations Python+numpy is comparable to IDL and
Matlab – faster for some operations, slower for others.

Python takes about 1/6 the number of lines of code as C, which at least anecdotally translates into a significant
decrease in the amount of time it takes an experience programmer to write their program. Since coding is Python
is relatively quick, one can develop the functionality in Python first and address any performance bottlenecks on the
second iteration.

The downside of adopting a state-of-the-art language, of course, is that it is evolving. There is an ongoing cost for
code maintenance to handle compatibility problems as the languages evolve.

4.4 Make better use of community code

The overall cost of data analysis tool development could be reduced if there were more sharing and less duplication
of effort. Therefore an important part of building a new analysis-tool infrastructure is to encourage such code shar-

14 Chapter 4. Why do we need new tools?

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

ing. This has become more common and easier now with the rise in popularity of tools like github for open-source
development.

The concept in this roadmap is to build most of the tools into ‘astropy <http://www.astropy.org>.‘_ The Astropy
Project is a community effort to develop a single core package for Astronomy in Python and foster interoperability
between Python astronomy packages. Astropy includes afffilated packages that are not part of the core source code
but can be found from the astropy website. Astropy does not depend on these packages, but the packages may depend
on astropy. These must be downloaded and installed separately from astropy itself.

Strategies that can help encourage sharing of community code include providing:

• Rubust, well-documented libraries in upon which to build.

• Easy-to-follow standards for source-code style and documentation.

• Templates for source code.

• Clear instructions on how to package the code so that it can be installed on multiple platforms, along with expert
assistance when necessary or feasible.

• An active developers’ forum.

4.5 Modern algorithms where relevant

There has been considerable evolution over the past few decades in the techniques and algorithms used to analyze
data, not only in astronomy but also in other fields. This includes advances in statistical techniques such as resampling
and Monte-Carlo Markov Chains (MCMC), different ways to approach the challenges of model fitting or optimization
(e.g. genetic algorithms), and different ways to compress or describe data via basis functions (e.g. wavelets, shapelets,
Karhunen-Loeve decompositions, etc.). Implementations of many of these exist already in the python/C ecosystem,
so including them in the astronomer’s toolbox in many cases may just be an issue of documentation and packaging.

4.6 Leverage advances in computer hardware

Computer hardware has evolved significantly since IRAF was developed. A significant fraction of the IRAF infrastruc-
ture, for example, deals with operating-system abstraction (allowing inter-operability with VAX/VMS and Unix) with
network abstraction, and with magnetic tape I/O. In the meantime, standard desktop and laptop computer hardware
now offers featuers such as full 64-bit addressing, multiple cores, hardware graphics acceleration and computation in
graphics processing units (GPUs). A lot of infrastructure for using these hardware advances already exists for Python
and C, although some of it is evolving rapidly (e.g. for GPUs).

Section *** discusses this infrastructure in more detail, with an indication of which current libraries and packages are
under consideration.

4.5. Modern algorithms where relevant 15

https://github.com
http://www.astropy.org/affiliated/

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

16 Chapter 4. Why do we need new tools?

CHAPTER 5

Science Use Cases

Before diving into more detailed concepts for specific tools, it is useful to have some examples of how the tools might
be used. Because the tools are meant to be general-purpose and because the science program on JWST diverse, these
use cases are meant to be illustrative rather than exhaustive. We focus in particular on JWST, but many of the tasks
are similar for other observatories.

To illustrate the use cases, flow digrams are shown for different types of JWST science. These flow diagrams start
where the JWST pipeline leaves off. The data have been calibrated, rectified, co-added, and extracted according to the
standard pipeline algorithms. We assume that these calibrations are sufficient, or that the astronomer can re-run the
pipeline if needed. The steps shown here are much more difficult to support in a general-purpose pipeline, because
they often depend on the specific science goals and require inspection and judgement from the investigator at various
steps. They may also combine data from other missions, which is beyond the scope of the JWST pipeline.

5.1 Faint Galaxies

A core science area for JWST involves imaging of faint galaxies. Observations will generally be in multiple bands,
which may or may not be observed with the same guide stars. The different bands will have different point-spread
functions. The investigator will often want to combine the JWST images with other data sets from other observatories.
The flow diagram below shows various tasks that an astronomer would be expected to combine the data, perform
custom measurements, derive physical quantities for individual galaxies, and construct statistical distributions for
comparison to theory.

5.2 Infrared Slit Spectroscopy of Galactic Objects

For long-slit or multi-slit spectroscopy, the JWST pipeline will present the astronomer with extracted one-dimensional
spectra that are wavelength and flux calibrated. Other observatories may or may not have an automated pipeline which
does that. Even for JWST, the cautious astronomer is going to want to carefully check the results in the first year or
two of JWST operations.

Further analysis will involve identifying spectral features (or cross-correlating with models), and determining parame-
ters such as fluxes, equivalent widths, or line profiles. Analysis often includes sophisticated modeling. In some cases,
the models are compared to compared to these derived quantities (which must have well-understood uncertainties).
In other cases, the models are used to generate simulated spectra (with as high fidelity as possible) and are compared
directly to the data.

17

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

Fig. 5.1: Illustration of the data flow for a multi-wavelength survey of faint galaxies. The JWST inputs are the
individual images from different bands and the JWST level 4 catalogs. The first steps involve inspecting and cleaning
up the data, which might have scattered light from surrounding bright sources or might be slightly misaligned due to
the use of different guide stars. Any mis-alignments between the JWST images and comparison images from other
observatories will also need to be measured and corrected. Detailed photometric comparisons will require efforts
to account for the different spatial resolution – which generally involves constructing PSF kernels to allow a higher
resolution image to be convolved to lower resolution. Those psf kernels are then applied in various ways to detect
source, measure their morphologies, and measure their fluxes. To characterize incompleteness and measurement
biases, these steps are also generally carried out on artificial sources that were inserrted into the real images. The
resulting catalogs are often matched to existing catalogs (e.g. of measured redshifts), and various physical quantities
and statistical distributions are derived from the measurements.

18 Chapter 5. Science Use Cases

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

5.2. Infrared Slit Spectroscopy of Galactic Objects 19

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

5.3 Imaging Young Stellar Objects in the Magellanic Clouds

The flow for multi-wavelength imaging of nearby objects shares many of the steps needed for faint-galaxy studies,
including image alignment, registration and PSF-matching to other data sets (images and catalogs), source detection
and characterization, and artificial source injection.

5.4 Need more use cases

Need more use cases!

20 Chapter 5. Science Use Cases

CHAPTER 6

Technologies and Infrastructure

One of the major challenges of developing software is the rapidly changing landscape of software infrastructure. Much
of this infrastructure is independent of astronomy, and it is often better to rely on existing solutions than invent new
ones. Ideally one would like to select building blocks that are stable and well tested, without being on their way to
obsolescence. It is silly for astronomers to build most of this infrastructure themselves, but some of it is astronomy
specific.

In discussing infrastructure, it is important to consider the following:

• Building on infrastructure that is produced elsewhere creates a software dependency.

• Supporting multiple infrastructures that accomplish similar purposes (such as many different file formats or
GUIs) can be costly.

In this section we discuss various items that can be categorized as infrastructure (because, ideally, they play no role
in the numerical computations). In some cases, the roadmap presents choices that have already been made. In other
cases, we discuss the current menu of choices to identify where further work needs to be done to make informed
decisions.

6.1 Data Formats

Currently, most astronomical images and spectra are stored and transported in FITS format. A variety of formats are
used for tabular data, including ASCII files with a variety of conventions for metadata, FITS tables, VO tables, and
databases.

6.1.1 Relatively Certain

For the support of JWST observers, the data analysis tools should at a minimum support the following formats for
“non-tabular” data:

• FITS

For the support of JWST observers, the data analysis tools should at a minimum support the following formats for
tabular data:

• ASCII Tables - All of the following (already supported by astropy.io):

– AASTex: AASTeX deluxetable used for AAS journals

– Basic: basic table with customizable delimiters and header configurations

– Cds: CDS format table (also Vizier and ApJ machine readable tables)

21

http://fits.gsfc.nasa.gov

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

– CommentedHeader: column names given in a line that begins with the comment character

– Daophot: table from the IRAF DAOphot package

– FixedWidth: table with fixed-width columns (see also Fixed-width Gallery)

– Ipac: IPAC format table

– Latex: LaTeX table with datavalue in the tabular environment

– NoHeader: basic table with no header where columns are auto-named

– Rdb: tab-separated values with an extra line after the column definition line

– SExtractor: SExtractor format table

– Tab: tab-separated values

6.1.2 Under Consideration

FITS has fairly serious limitations for some types of metadata. ** Perry, add a few words here about what is under
consideration as an alternative. **

HDF5 is a format capable of handling complex data. It is has seen limited use in astronomy, but is widely used outside
of astronomy. It is of potential interest for all kinds of data. For tabular data in particular, the pytables package offers
very efficient ways of querying and doing numerical computations on large datasets.

Relational databases. Python currently offers several ways to interface with relational databases, so nothing needs to
be added to enable queries and database manipulation. One could imagine there would be interest in developing a
simplified query interface to popular astronomical databases, but so far we have no specific use cases for this roadmap.
Ureka is currently bundling the following python database libraries:

• MySQLdb

• PostgreSQL

• SQLite3

JSON is a lightweight data-interchange format that is increasingly used for transporting information from browswer
queries. Libraries in python exist for reading and writing JSON. It would be worth having the the ability in astropy to
import JSON tables, although the immediate pressure for this is low.

6.2 Data Abstraction

The concept in this roadmap is that most numerical calculations are done at root level by calls to numpy, (although
when performance considerations arise, wrapping C code, using numba or bottleneck are under consideration). Re-
gardless of the guts of the calculation, there is usually a need to pass metadata from one routine to the next, and it can
be inefficient to read and write files from disk if the only purpose is to carry around metadata. Furthermore, it is often
useful to have an array of measurements accompanied by other arrays such as uncertainties or flags, and to pass these
associated arrays as one entity between different routines.

There is therefore the need to have a data abstraction layer that is distinct from the disk file format and that is optimized
for in-memory operations.

There are several concepts for data abstraction that are likely to underpin the data analysis software developed in this
roadmap:

• astropy.nddata provides a class and related tools to manage n-dimensional array-based data.

22 Chapter 6. Technologies and Infrastructure

http://www.hdfgroup.org
http://www.pytables.org/moin
http://net.tutsplus.com/tutorials/tools-and-tips/relational-databases-for-dummies/
http://www.json.org
http://http://numba.pydata.org
https://pypi.python.org/pypi/Bottleneck
https://astropy.readthedocs.org/en/v0.2.4/nddata/index.html

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

• astropy.table provides facilities for working with tables that are independent of the disk-storage format and
handle missing data, descriptions, units and column formatting.

• stpipe.models provides a class and tools associated with model fitting.

• astropy.wcs provides utilities for managing world-coordinate-system transformations.

6.3 Parameter Handling

The current concept is to use configobj to handle file-oriented input of parameters.

6.4 Scientific and Numerical Libraries

Python is attractive as the main language for the data analysis tools in part because it already has a rich library of
numerical, scientific and statistical tools.

6.4.1 Relatively Certain

The current plan is to build around the following libraries:

• numpy N-dimensional array processing.

• scipy Scientific computing library.

• astropy Astronomical utilities (The software in this roadmap will have strong dependencies on astropy, building
on its core library. The vision is that most or all of the tools discribed here will become part of astropy itself.)

6.4.2 Under Consideration

There continues to be rapid evolution outside of astronomy in the numerical computing for python. Building around
these libraries could reduce the coding effort needed for developing the analysis tools and could improve their perfor-
mance. But each library creates a dependency, so we will have to choose carefully and probably not let all flowers
bloom in this area. The following are under consideration:

• scikits These are add-on packages for scipy that are in various states of development. Two of these are already
well developed and of particular interest: scikit-image, focusing primarily on image filtering, segmentation, and
morphology, and scikit-learn, focusing on machine learning.

• cython Compiler for for adding C extensions within python code.

• numba Offers significant peformance enhancements to numpy using a just-in-time specializing compiler to
LLVM, which is itself a compiler).

• bottleneck a collection of fast numpy array functions written in Cython.

• pytables a package for working with hdf5 files and efficiently manipulating extremely large amounts of data.

• pandas Focuses primarily on statistical analysis of tabular data, with similar basic functionality to the R statistical
language (but without the huge package of contributed libraries).

• fftw Fast Fourier Transforms (faster than other options currently available in numpy or scipy).

Ureka is currently buldling the following additional libraries, not mentioned above, in its distribution. (Does any code
in Ureka depend on these, other than scipy??):

• BLAS Basic linear algebra. Bundled with the standard scipy distribution.

6.3. Parameter Handling 23

https://astropy.readthedocs.org/en/v0.2.4/table/index.html
https://astropy.readthedocs.org/en/v0.2.4/wcs/index.html
https://pypi.python.org/pypi/configobj
http://www.numpy.org
http://www.scipy.org
http://www.astropy.org
http://scikits.appspot.com
http://scikit-image.org
http://scikit-learn.org/stable/
http://www.cython.org
http://numba.pydata.org
https://pypi.python.org/pypi/Bottleneck
http://www.pytables.org/moin
http://pandas.pydata.org
http://www.fftw.org
http://www.netlib.org/blas/

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

• LAPACK Linear algebra package. Bundled with the standard scipy distribution.

• GSL The GNU Scientific Library.

• SymPy Symbolic mathematics library (Computer Algebra System).

6.5 Physical Units and Constants

The current concept is to continue to develop astropy.units to handle physical quantities, and to continue to develop
astropy.time to handle time.

6.6 Interprocess Communications

The inter-process communication IPC infrastructure handles data transport between simultaneously-running, indepen-
dent processes. Examples include passing cursor positions from a GUI to a task that might perform some analysis of
the pixels near the cursor, or passing positions of sources to a routine that might mark them on an image display.

6.6.1 Relatively Certain

The following IPC protocols are likely to be supported:

• SAMP The Virtual Observatory messaging protocol.

• OMQ The protocol used by ipython.

6.6.2 Under Consideration

The following are under consideration:

• XPA The protocol used by the SAO ds9 image display. Since ds9 now can communicate using SAMP, it is
unclear if XPA support is needed.

• REST A standard protocol for client-server communications, popular in web services.

• AMPQ another popular message-passing protocol. Quoting from the zeromq website AMQP and 0MQ have
quite different goals. AMQP aims to commoditize existing enterprise messaging patterns, while 0MQ aims to
create messaging patterns that can succeed at Internet scale...0MQ acts more like low-latency products.

6.7 Multiprocessing

Multiprocessing involves making use of either multiple cores on a single computer, or multiple computers on a net-
work. For typical JWST tasks, it is likely that the work is embarassingly parallel in the sense that the tasks can be
accomplished little or no communication between tasks running in parallel. There are numerous ways of dealing with
such problems that do not require any astronomy-specific software development. Examples include:

• Condor a queuing system for distributed computing;

• Ipython parallel computing, which supports a variety of different parallel and distributed cmoputing models;

• The python multiprocessing module which can create pools of subprocesses that can inter-communicate.

24 Chapter 6. Technologies and Infrastructure

http://www.netlib.org/lapack/
http://www.gnu.org/software/gsl/
http://sympy.org/en/index.html
https://astropy.readthedocs.org/en/v0.2.4/units/index.html
https://astropy.readthedocs.org/en/v0.2.4/time/index.html
http://www.ivoa.net/documents/SAMP/
http://zeromq.org
http://hea-www.harvard.edu/RD/xpa/env.html
http://rest.elkstein.org
http://www.amqp.org
http://zeromq.org/docs:welcome-from-amqp
http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://research.cs.wisc.edu/htcondor/
http://ipython.org/ipython-doc/dev/parallel/
http://docs.python.org/2/library/multiprocessing.html

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

Thread-based parallelism is not always efficient in python due to the Global Interpreter Lock. Many of the subtleties
are addressed in this article by Jesse Noller.

For the purposes of this roadmap, the brief summary is that the data-analysis software in this roadmap will be amenable
to multiprocessing using standard tools. In the initial implementation, it is unlikely that the tools themselves will use
multiprocessing internally. However, multiprocessing may be one of the ways to address performance issues if re-
coding in a faster language (e.g. C) doesn’t solve the problem.

6.8 Special-Purpose Hardware

Examples of special-purpose hardware include Graphics Processing Units (GPUs), and Accelerated Processing Units
(APUs). It is currently not envisioned that any the software in this roadmap will require the use of such hardware. It
is conceivable that routines could be developed where the use of a GPU is an option if it is available, but that is not a
near-term priority.

6.9 GUI Frameworks

The aim is to separate the computational layer from the GUI layer so that different user interfaces can be used to
access the same functionality. There will nevertheless be default graphical user interfaces for inputting parameters or
otherwise controlling task execution, and interacting with graphics and images. Standard libraries will be used for
developing the interfaces and there will be a gui abstraction layer to allow different GUIs to interact with the software
tools with a simple change of user preferences.

6.9.1 Relatively Certain

While not really a GUI per se, the ipython notebook <http://ipython.org/notebook.html> provides a full-featured en-
vironment for interactive scripting, and it will be a goal to make the data analysis tools work well in this environment
and to use it for many of the tutorials.

6.9.2 Under Consideration

The GUI frameworks under consideration are:

• Qt A popular open-source cross-platform framework with python bindings.

• glue A python library for exploring relationships within and among related data sets.

6.10 Software Distribution

6.10.1 Under Consideration

STScI has recently developed Ureka as a unified distribution mechanism for STScI- and Gemini-developed python
tools, as well as IRAF, pyraf, STSDAS, and a variety of supporting libraries. This is still in beta testing as of September
2013.

There are two other distribution mechanisms worthy of consideration:

• Anaconda the distribution mechanism used by Continuum Analytics. This distribution already includes many
of the open-source scientific packages and libraries under consideration as dependencies for the data-analysis
tools.

6.8. Special-Purpose Hardware 25

https://wiki.python.org/moin/GlobalInterpreterLock
http://jessenoller.com/blog/2009/02/01/python-threads-and-the-global-interpreter-lock
http://qt-project.org
http://www.glueviz.org
http://ssb.stsci.edu/ureka/
https://store.continuum.io/cshop/anaconda/
http://www.continuum.io

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

• Canopy the distribution mechanism used by Enthought. This distribution already includes many of the same
libraries as Anaconda, and also includes astropy.

6.11 Documentation

6.11.1 Relatively Certain

The current plan is to use sphinx for documentation. This is already in use for astropy and STScI software and is
widely used in the python community, as well as for other languages. It produces web pages as well as pdf, ebooks,
and other formats and is able to import the same docstrings used to drive the help for the command-line interface to
the data-analysis tools or for mouseovers in ipython notebooks. This roadmap has been written using sphinx.

It is likely that the documentation will use locally-developed and open-source extensions and styles for sphinx, such
as numpydoc and sphinxcontrib-programoutput.

6.11.2 Under Consideration

The Ureka distribution currently includes the following in addition to sphinx and numpydoc, possibly for support of
code that was written before sphinx appeared on the scene:

• Epydoc.

• Pygments.

• Docutils.

• Jinja2.

6.12 Testing

6.12.1 Relatively Certain

What’s the plan? Nose?

6.12.2 Under Consideration

The Ureka distribution currently includes the following:

• Pandokia

• py

• PyTest

• unittest2

• shUnit2

• nose.

26 Chapter 6. Technologies and Infrastructure

https://www.enthought.com/products/canopy/
https://www.enthought.com
http://sphinx-doc.org
https://pypi.python.org/pypi/numpydoc
http://pythonhosted.org/sphinxcontrib-programoutput/
http://epydoc.sourceforge.net
http://pygments.org
http://docutils.sourceforge.net
http://jinja.pocoo.org/docs/
http://nose.readthedocs.org

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

6.13 Graphics and Image Displays

6.13.1 Relatively Certain

For 2-D line graphics, the plan is to use matplotlib, a full-featured library that produces publication-quality graphics as
well as providing the hooks for developing interactive GUIs or widgets and for animations. It also some 3D graphics
and image display. It is probably not the platform for interactive image display as a replacement for ds9.

Independent of whether any new image-display tools are developed, ds9 will be supported. In particular, it will be
possible to load and manipulate images from memory and interact with cursors and regions to perform data analysis.

6.13.2 Under Consideration

The following are under consideration:

• glue A python library for exploring relationships within and among related data sets.

• Mayavi A python library for 3D visualization built on the Visualization Toolkit (VTK).

• ginga A FITS image viewer under development at the Subaru observatory.

• APLpy, an astropy-affiliated package, is layered on top of matplotlib and provides routines for making full-color
images and making various kinds of astronomical graphic overlays on images (e.g. coordinage grids and beam
sizes).

The following are currently bundled with Ureka: - graphviz visualization software for network diagrams, flowcharts
and other structural information. - PIL The Python Imaging Library, mostly useful for supporting standard non-FITS
formats.

6.13. Graphics and Image Displays 27

http://matplotlib.org
http://hea-www.harvard.edu/RD/ds9/site/Home.html
http://www.glueviz.org
http://mayavi.sourceforge.net
http://www.vtk.org
https://pypi.python.org/pypi/ginga
http://aplpy.github.io
http://www.graphviz.org
http://effbot.org/imagingbook/pil-index.htm

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

28 Chapter 6. Technologies and Infrastructure

CHAPTER 7

Architecture

The figure below provides a high-level overview of the architecture of the data-analysis tools. The goal is to keep the
computational tools lightweight and modular, and insulated from details of the data structure on disk and the details
of the user interfaces. The tools will primarily work on data arrays stored in memory, with parameters passed as
arguments. There will be a separate layer to read data in from disk and present the data to the tools via standard
data models (which may in some cases be objects with methods). Reading and writing of data is accomplished in a
separate layer, so that data can generally be passed in memory from task to task. This is different from IRAF, which
tends to work on files, which must be read and written for each separate operation. Similarly, interaction with user-
interfaces will be in a separate layer, which can be very lightweight: all it has to do is gather the parameters from
the user-interface, call the routine with those parameters, and return the results. There will also be a separate event-
driven interface to the same tools, which can be triggered by events such as mouse clicks in tools that are connected
via some form of inter-process communication (IPC). To support multiple IPC protocols, there will need to be an
IPC abstraction layer that makes these all look the same to the event-driven interface layer. Sometimes the tools will
interact with image displays and graphics through IPC channels with two-way communication. Other times, the tools
will send their output without setting up an event-driven interaction.

There are a few things to note about this architecture.

• It is not compatible with client-side computing in a web browser.

• The software is nevertheless compatible with server-side computing, where the computations are done either on
the user’s machine or on a remote server but the user interface is a web browser.

• The software is compatible with user interfaces that are not web browsers, which includes other types of
graphical-user interfaces, along with editing of human-readable parameter files and invoking tools from a Unix
command line or from within python.

• It is a goal to make it straightforward for a user to fire off a wide variety of computations via data selections in
an image display or plot. This is handled by the event-driven interfaces which will then present these selections
to the tools in the same way that a user would present them if the user had instead defined the selection mathe-
matically in a script. (Indeed, one of the options in this layer should be to save the selections so that they can be
edited and turned into scripts.)

29

http://docs.python.org/2/tutorial/classes.html#class-objects
http://docs.python.org/2/tutorial/classes.html#method-objects

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

Fig. 7.1: A schematic view of the architecture of the data analysis tools.

30 Chapter 7. Architecture

CHAPTER 8

The Computational Toolbox

This section describes the specific software tools that are to be built. It should be viewed as a concept document not
a requirements document. The discussion of each tool is brief, and comments are added about existing infrastructure
that can be used to build each tool.

Many of the tools should work equally well with ground-based data or data from space observatories, but there is a
need to include tools for standard kinds of ground-based data analysis. These are included, although the list may be
less complete than for the JWST tools.

The figure below provides birds-eye view of the tools described in this section.

Fig. 8.1: A high-level categorization of the tasks described in this section. Many of the nodes in this map have
sub-nodes and sub-sub-nodes that are not shown but would generally comprise separate tools. At the level of detail
shown here there are ~50 categories of tools. In the end this will probably expand into of order 103 individual tools.

31

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

8.1 General-purpose multi-dimensional Array Analysis tools

The descriptions of the tools here are deliberately brief. The main goal is to highlight the basic functionality. In many
cases basic functionality already exists within the various python scientific libraries. In those cases, the development
effort for astronomers is generally focused on building interfaces to make them convenient to use on astronomical data
sets. This includes:

• Consistent approaches to masking or rejecting data

• Consistent approaches to handling of undefined data and masks

• Consistent approaches to dealing with error arrays and data quality arrays

• Consistent approaches to dealing with metadata, including WCS information

• Consistent approaches to history and logging

8.1.1 Interactive Image Measurements

The new tools need to have the kinds of functionality currently supplied by IRAF’s imexamine tool. This includes:

• centroids

• contours

• 3d surface plots

• 2d cuts

• localized histograms

• aperture photometry

• basic statistics

8.1.2 Basic Statistics

The includes basic statistics like mean, median, standard deviation, minimum and maximum, with optional masking,
setting of a floor and ceiling on input values and rejection of outliers.

8.1.3 Filtering

There is already rich set of image filtering tasks in the scipy ndimage module, the scipy signal and in scikit-image.
However, these do not always deal gracefully with image masks, undefined values, or error arrays. The astropy nddata
module is aimed at addressing this issue. Filtering includes the following, all in N dimensions, where N is at least 3
for JWST data:

• smoothing

• convolution

• gradient detection

• wavelets

32 Chapter 8. The Computational Toolbox

http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://docs.scipy.org/doc/scipy/reference/signal.html
http://scikit-image.org
http://docs.astropy.org/en/v0.2.1/nddata/index.html

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

8.1.4 Surface Fitting

A very common operation for astronomical images is to fit a relatively smooth line, surface, or multi-dimensional
manifold to a data set (with optional masking and iterative data rejection). This is closely related to smoothing, except
that the surface is parametized somehow. The following parametrizations are common enough that they should be
provided:

• orthogonal polynomials (e.g. chebyshev)

• splines

8.1.5 Interpolation

There are many, many applications that involve interpolation in dealing with astronomical images. A typical applica-
tion involves estimating the sky background associated with sources in the image. A set of background estimates from
“clean” regions in the image are usually interpolated to the positions of the sources. Another example is in applying
geometrical transformations to images. The fluxes on a rectangular pixel grid are used to estimate the fluxes that would
have been measured on a different pixel grid.

Relatively Certain

The following kinds of interpolation should be included:

• multi-dimensional linear and polynomial interpolation

• spline interpolation

Under Consideration

• Inverse distance-weighted interpolation, and variants that use local neighbors

• Natural neighbor interpolation

• Radial basis function) interpolation

• Gaussian processes regression, or Kriging, commonly used in geospatial modeling

• Band-limited interpolation (e.g. sinc or Lanczos)

• Drizzling

8.1.6 Geometric transformations and resampling

The toolbox will include a wide variety of ways to transform images. Many of these involve resampling, and interpola-
tion. Most of the framework for doing this already exists in python numerical libraries. For geometric transformations,
easy things should be easy to perform:

• Block averaging or block replicating

• Linear transformations (shift, magnify, rotate, transpose)

Harder things should be possible:

• Affine transformations (preserving straight lines and planes)

• Arbitrary geometric distortions

8.1. General-purpose multi-dimensional Array Analysis tools 33

http://en.wikipedia.org/wiki/Inverse_distance_weighting
http://en.wikipedia.org/wiki/Natural_neighbor
http://wiki.scipy.org/Cookbook/RadialBasisFunctions
http://en.wikipedia.org/wiki/Kriging
http://en.wikipedia.org/wiki/Drizzle_(image_processing)

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

• Standard map projections (extensive support for various projections exists in matplotlib, but it is currently hard
to extract the projected data for other uses).

It is would be useful to make making the different interpolation options easily accessible to the geometric-
transformation tools.

8.2 Imaging

In this section, we focus on tools that are mainly needed for undispersed images of astronomical sources. Some of these
tools apply to images that are spectrally dispersed as well, but most of those tools are discussed in the spectroscopy
section.

8.2.1 Image Registration & WCS Tools

Even if JWST images are perfectly rectified by the standard pipeline, it will be frequently necessary to register other
images to the JWST images. The geometric distortion properties of these images are sometimes unknown and must
be derived using the data themselves. The various tasks involved (many of which are in the IRAF immatch package)
include:

• image distortion fitting

• image rectification

• aligning images

• combining images to a common grid

• matching catalogs (triangle matching)

• image cross-correlation

8.2.2 NIR Image Reduction & Stacking

This would replace the functionality of the IRAF irred package.

8.2.3 CCD Image Reduction & Stacking

This would replace the functionality of the IRAF ccdred package.

8.2.4 Peak Finding

Peak finding is a typical operation on astronomical images. It is the first step of any source detection and photometry
package, but is often useful by itself. Routines to do this in scipy and scikit-image would serve as a starting point.

8.2.5 Image Segmentation

Image segmentation is often the next step after finding peaks. Pixels are assigned to sources via some algorithm. The
routines for image segmentation in scipy and scikit-image serve as a good starting point. They provide a rich set of
options for tasks such as labeling pixels associated with HII regions or clusters within an individual galaxy.

34 Chapter 8. The Computational Toolbox

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

8.2.6 Image Cutouts

Obtaining cutouts of selected sources from a database of larger images is a common operation, but one that has not
been standardized. Most organizations serving out data now support the IVOA Simple Image Access Specification
(SIAP). However this does not solve the problem of how to organize the data or determine footprints. The IVOA has a
draft of a footprint specification open for comments. Many of the institutions serving large data sets support SIAP and
are headed toward common standards for footprints. However, tools are needed to help individuals and small groups
accomplish the same functions on their smaller datasets for their own use.

8.2.7 PSF Matching

The need to match the point-spread function between different images is very common, and a place where existing tools
need improvement. Typically one wants to determine the convolution-kernel that, when applied to a high-resolution
image, produces an image with the point-spread function of a lower-resolution image. Examples include matching the
PSFs of a JWST NIRCam image to that of a MIRI image. Or matching a JWST image to a ground-based image. The
PSF kernel may be spatially varying across the image. Sometimes one has PSF models for each instrument that can be
used to construct the PSF kernel. Other times, one must rely on sources in the image, which may or may not be point
sources.

A popular algorithm in ground-based astronomy is the Alard-Lupton method of decomposing the kernel into a set
of Gaussian basis functions. This is widely used in the supernova-search community. It works very well for typical
ground-based PSFs but the Gaussian basis-function may not be the best choice for PSFs with a lot of structure or
broad wings. Becker et al. (2012) discuss other methods and promote a method using regularized delta functions.
Regardless of the method, the toolbox needs to have efficient, flexible tools for selecting the sources to use for PSF
matching, iteratively and perhaps interactively rejecting bad ones, evaluating the results, extracting the kernels, and
applying them for photometry or image subtraction.

8.3 Spectra and Spectral Extraction

8.3.1 Spectral extraction

At the simplest level, spectral extraction means turning a two-dimensional dispersed image into a one-dimensional
spectrum. This involves separable steps:

• Identifying the pixels to be used for source and background;

• Co-adding the pixels in the cross-dispersion direction according to a specified weighting (and masking) scheme
and subtracting background.

Generally speaking, the task of spectral extraction does not include:

• Converting pixels to wavelength

• Converting counts to flux

Nevertheless, there need to be user-oriented tools layered on top of spectral extraction that apply the dispersion solution
and flux calibration.

While the JWST pipeline will generally attempt to extract scientifically useful 1D spectra of the objects in the field,
it is very likely that astronomers will want to control the extraction in different ways. Some of this can be done by
tweaking pipeline parameters, but there also need to be general-purpose tools for doing this driven from parameter
files or GUIs or regions on an image display.

This software can become quite complex, depending on the level of sophistication.

8.3. Spectra and Spectral Extraction 35

http://www.ivoa.net/documents/SIA/
http://www.ivoa.net/documents/latest/Footprint.html
http://adsabs.harvard.edu/abs/1998ApJ...503..325A
http://adsabs.harvard.edu/abs/2012MNRAS.425.1341B

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

A simple approach involves selecting a spectrum on a rectified image (where all spectra are straight lines and where
there is a linear wavelength scale per pixel), extracting a rectangular region from this image and summing along
columns or rows. This is very useful for quick-look analysis, but often insufficient for the final scientific analysis.

The next level of sophistication selects a curved spectrum on a non-rectified image, where the wavelength scale may not
be linear. Either the software traces the spectrum, or has a pre-defined map of the spectral traces so that it can extract
the spectrum. It then applies the dispersion solution and either constructs a 1D array with a linear (or logarithmic)
relation between wavelength and pixel number, or it constructs a table where each row has a wavelength.

There is also a further level of sophistication, which uses a rectified, co-added image from multiple exposures as a
tool by which to identify source and background regions. However, these regions are then transformed back into the
reference frame of the original individual (probably dithered) exposures and the spectral extraction is carried out there.
This minimizes number of resampling steps carried out on the data and simplifies the propagation of uncertainties.

It is a goal to support all three methods of spectral extraction, with both GUI-specified extraction regions and regions
specified via input parameters.

8.3.2 Resampling & combining spectra

Resampling a 1D spectrum can mean taking a spectrum on one wavelength scale and putting it on another scale. Or it
can mean taking a table of fluxes and wavelengths and turning it into an array with a specified wavelength scale. Or it
can mean taking a model spectrum and interpolating it to find its values at the wavelengths of an observed spectrum.
Resampling involves interpolation and is therefore an approximation. There are many different ways to interpolate,
each with its own strengths and weaknesses. Many interpolation methods are already supported by scipy and numpy, so
the primary goal is to provide interfaces to these interpolation methods so that they can be easily applied to astronomy
data sets with attention to metadata, error arrays and masks.

Resampling 2D spectra is more complicated and often requires a detailed specification of the image distortions and
wavelength calibrations of the instruments used to obtain the data. At the lowest level it is just 2D interpolation. The
main challenge is to develop a simple, yet general mechanism to specify the image geometries.

Combining spectra involves co-adding or finding some robust measure of the mean of data from several different
sources. The weights often depend on the uncertainties and masks. The co-added spectra should have associated
uncertainties when it is possible to compute them.

8.3.3 Visualization & interactive analysis (splot)

An important functionality for the Graphical User Interface(s) is to provide interactive viewing and manipulation of
one-dimensional spectra. The type of functionality needed includes that available in the splot package, SPECVIEW,
VOSPEC, the STARLINK SPLAT package or a variety of individually-maintained IDL tools.

Perhaps more important than the specific functionality is to develop a framework to make it easy for astronomers, who
are generally not experienced GUI developers, to add functionality to the GUI for a particular science application.

8.3.4 Emission & absorption line fitting

The software tools need to include a variety of fitting functions and fitting methods. Fitting functions should include
simple Gaussians and Lorentz and Voit profiles, as well as more elaborate functional forms. The software should
allow for convolution with a wavelength-dependent line-spread function. It should provide a variety of minimization
routines and ways of treating uncertainties and missing data. It should work well in regimes where the assumption of
Gaussian uncertainties on the fluxes is not valid (e.g. for very low counts/pixel). It should have ways to convert the
results into physical units. It should be straightfoward to use the same software to assess uncertainties via resampling
or Monte-Carlo techniques.

36 Chapter 8. The Computational Toolbox

http://iraf.net/irafhelp.php?val=splot&help=Help+Page
http://www.stsci.edu/institute/software_hardware/specview
http://www.sciops.esa.int/index.php?project=ESAVO&page=vospec
http://star-www.dur.ac.uk/~pdraper/splat/splat.html
http://idlastro.gsfc.nasa.gov/other_url.html

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

8.3.5 General spectral fitting

In addition to fitting emission and absorption lines, there need to be tools for estimating or fitting continua (used
in line-fitting). This includes allowing the user to interactively select regions to use for continuum fitting, as well
as providing algorithms for iteratively masking emission and absorption features as part of the determination of the
continuum spectrum.

There also need to be tools for fitting heuristic or physical models to spectra, e.g. along the lines of the contributed
package specfit in STSDAS.

8.3.6 Line lists

Relatively Certain

The toolbox should contain convenient, well-documented lists of the wavelengths of lines commonly seen in astro-
nomical objects.

Under Consideration

It is less certain how far to push into the astrophysics of spectral analysis. It might make sense to provide common line
ratios (e.g. from Case-B recombination), and to provide simple interfaces to more sophisticated tools like CLOUDY.

8.3.7 Slitless spectroscopy

HST and JWST each have two slitless spectrographs. The JWST NIRSpec MOS can also mimic a slitless spectrograph.
The lack of a slit creates several challenges for slitless spectroscopy:

• Spectra from several sources can overlap;

• Overlap can include a zeroth-order image or spectra from higher orders;

• Spectra taken at different rotations can be used to overcome some of the effects of blending;

• The wavelength calibration depends critically on knowing the source positions; and

• The convolution kernel for a spectral feature can be quite broad because it not truncated by a slit.

For HST, slitless spectroscopy has been supported by the AxE package. The 3D-HST Treasury Program developed
a separate set of tools. Regardless of the ability of the JWST pipeline to meet all the calibration needs, tools for
observers to inspect the original 2D spectra and extracted 1D spectra, manipulate and re-run the extraction, model the
line-spread function, and deal with the source confusion are essential.

Searches for emission lines (such as Lyman-alpha lines from very distant galaxies) are hopeless without dealing with
most of these issues. It would clearly be of interest to observers to have a tool that searches for emission lines in
the data automatically, accounting for the difficulties of spectral overlaps and the fact that the S/N for a significant
detection is dependent on the size of the line-emitting region and the underlying background due to sky and galaxy
continuum.

8.3.8 Instrumental corrections

For JWST and HST, the instrumental corrections are the job of the pipeline. The pipeline parameters and tasks
themselves can be modified and re-run by the user. These include:

• converting counts to calibrated fluxes in physical units; applying sensitivity, flat-field and illumination correc-
tions

8.3. Spectra and Spectral Extraction 37

http://www.pha.jhu.edu/~gak/specfit.html
http://www.nublado.org
http://axe-info.stsci.edu

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

• converting pixel positions to wavelengths

To the extent that the assumptions for different instruments can be standardized, it would be useful to include the
building blocks for applying instrumental corrections for other instruments in the general set of tools. However, be-
cause this depends on standardized formats for calibration information, it will require broad community involvement.
One way forward would be to develop a prototype of applying insrumental corrections to a popular ground-based
spectrograph, using the same calibration philosophy that is used for JWST, and document this as a template for other
instruments.

More importantly, there are tasks involved in deriving these corrections that are in common to HST and JWST instru-
ment scientists and the large community of astronomers needing to calibrate other instruments:

• deriving the instrumental sensitivity from standard-star observations;

• deriving the instrumental flat field;

• deriving instrumental illumination corrections;

• deriving the instrumental dispersion solution; and,

• deriving the absolute wavelength calibration

In the case of ground-based observations, some of these calibrations need to be applied night by night, while for the
space instruments there is no need to worry about atmospheric variations and other time dependencies (e.g. thermal
changes of the instrument) tend to be much slower.

8.3.9 Environmental corrections

It is useful to separate environmental corrections from instrumental corrections, with the distinction that the environ-
mental corrections generally happen outside of the telescope. These include:

• Correcting spectra to heliocentric, galacto-centric or cosmic-flow corrected velocities;

• Shifting spectra to the rest frame;

• Correcting for interstellar reddening and extinction;

• Correcting for scattered light;

• Modeling and/or removing telluric features; and,

• Correcting for airmass and atmospheric extinction

The last couple items on this list are unique to ground-based instruments. The rest are important for JWST and HST,
although some of these are done in the pipeline.

8.4 3D Spectroscopy

In 3D spectroscopy, instead of having a two-dimensional image, the scientist is presented with a three-dimensional
image, with two dimensions of spatial information and one dimension of wavelength information. There are some
unique challenges to these kinds of data. However, there is also a lot of commonality with 1D and 2D spectroscopy
(for example in extracting 1D spectra or fitting spectral features).

For JWST 3D spectra (in NIRSpec and MIRI), an image slicer reorganizes the incoming light to provide non-
overlapping spectra of slitlets – small rectangular slices of the sky. These dispersed spectra are collected in a 2D
detector and can then be re-assembled into a 3D data cube in the pipeline, after correcting for various distortions in
the optical system. Generically, the data-analysis tools allow astronomers to view, select, and analyze data in this 3D
space.

38 Chapter 8. The Computational Toolbox

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

It is worth pointing out that this is not the only way of storing the 3D information. It is the most convenient way for
a user to view the 3D data, but it involves resampling. Provided one has the tools to map from the original detector
reference frame to the rectified 3D image frame, one can imagine developing tools that allow viewing and selection
in a rectified 3D image, but do the extraction and analysis on the original pixels. Such tools are more challenging to
develop, but are part of the trade space being considered.

In this section, for the sake of brevity, we concentrate mostly on tasks that are specific to the 3D nature of the data.
Once one has selected regions to used for the source spectrum and the background, many of the tasks (e.g. fitting
spatial or spectral models) are functionally equivalent to the 1D or 2D cases.

8.4.1 3D image arithmetic, filtering, thresholding, and masking

Basic tools for arithmetic operations on 3D data cubes will be provided. This includes simple operations like
add/subtract/multiply/divide as well as applying more complex functions. All of this generic functionality already
exists in numpy and scipy, so the development effort will be in developing interfaces that do sensible things with
metadata, errors and masks.

The basic tasks for thresholding, masking, peak-finding, convolution, filtering, and general signal processing also
mostly exist in the numpy/scipy infrastructure and will not require a huge effort to incorporate into 3D spectroscopy
tools.

The standard mechanisms for slicing arrays, doing statitistics, and projecting/summing along dimensions will be
available.

8.4.2 Align & combine datacubes

An alarmingly common operation will be to try to align and combine data cubes. This could be to produce spectra
of the same sources over a wider spectral range (i.e. combining in the wavelength direction) or to produce co-added
spectra of sources taken in separate (possibly dithered) exposures. The JWST pipeline will deal automatically with
some of the latter, when the images fall in a pre-defined association. However, users will no doubt want to create their
own associations.

If the image alignment is not already known, the tools described in the Imaging section above can be used to align
extracted 2D projections of the 3D data cube. If this is shift, rotation and scaling, the alignment can be fairly simple.
If it involves geometric distortion, it can be quite complex.

The image combination operation can be challenging. In the wavelength direction, the spectra may overlap and may
have different wavelength scales. The user may want to weight the spectra via some algorithm and may want to
apply masking. The user will generally want to produce an error array to accomany the combined data dube. These
operations almost certainly involve interpolation, and therefore involve some science-specific decisions. The same
considerations apply to the spatial dimension, which could in principle include image distortions. The challenge is to
create a set of tools that include:

• a simple interface for quicklook or for cases where the exact details of the image combination are unimporant;

• more elaborate interfaces and documentation to allow users to tailor the image alignment and combination to
their science goals.

8.4.3 Fit & remove continuum

Fitting and removing a continuum is a generic task that applies to 1D, 2D and 3D spectroscopy. In a 1D spectrum, the
astronomer usually specifies regions to use for fitting the continuum – either interactively or via some algorithm that
iteratively detects emission and absorption features and masks them out. The fitting algorithm could be parametric,
or could involve interpolation. The choice depends on the data and the science application. Tools need to be flexible
enough support many options.

8.4. 3D Spectroscopy 39

http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#basic-slicing

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

The philosophy of region-selection selection in the wavelength dimension is the same for 2D or 3D data, but now
the spectra have to be combined somehow either to provide a visual display of a 1D co-added spectrum of a given
spatial region to allow the astronomer to select the regions to use (or mask out) in the fitting, or there needs to be a
specification of how the iterative masking algorithm averages over the spatial pixels. Sometimes there will be spatial
as well as spectral masks (e.g. to remove foreground sources).

In a 1D spectrum there is one continuum spectrum. In the 2D and 3D cases there are more choices to be made. In 2D
spectral analysis, there could be a single 1D continuum spectrum that is modulated by the spatial profile of the source,
or there could be separate continuum spectra for each pixel in the spatial dimension. The approach depends on the S/N
and the science application. Similarly for a 3D data cube, the science and S/N may dictate whether one tries to derive
and divide out a single continuum spectrum for all spatial pixels, a continuum spectrum that varies smoothly in some
fashion along spatial coordinates (e.g. via fitting or interpolation) or a separate continuum spectrum for each spatial
pixel.

8.4.4 Extract 1D spectra from regions

A common operation on 3D data cubes is to extract 1D spectra from specified regions. These regions could be selected:

• interactively on the 3D visualization tool

• via adaptive spatial binning such as Voronoi tesselation

• via thresholds in S/N or isophotes, applied to specific wavelength ranges

• via scripts

• via tables.

These regions can have a variety of shapes, which may or may not be connected. The tools should allow the selection
of background regions as well.

The tools should support different ways of combining spectra (e.g. sums, means with and without weighting, or
medians). The tools should return error arrays and bad-pixel masks when relevant.

8.4.5 Construct a 2D image from 3D cube

A typical operation on a 3D data cube will be to construct a 2D image of some specific region in wavelength (e.g.
emission lines) This operation may include some interpolation over masked pixels in the wavelength dimension, so is
not quite as simple as summing along one dimension of a 3D array.

One use of such a projected image is to drive automated algorithms for 1D spectral extraction from the data cube. For
example: find peaks in the image, create extraction apertures around those peaks and extract the associated 1D spectra.
The same tasks used for peak-finding and image segmentation described earlier in the Imaging section can be used for
this.

8.4.6 Point-source extraction

The 1D extraction of the spectra of point sources is a special case.

Relatively Certain

The tools should support optimal extraction weighted by the PSF profile, or simple aperture extraction.

40 Chapter 8. The Computational Toolbox

http://adsabs.harvard.edu/abs/2003MNRAS.342..345C

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

Under Consideration

More challenging, but possible, is to derive the 1D individual spectra of point-sources in very crowded fields where
the PSF wings substantially overlap. This involves simultaneously fitting for the fluxes of the overlapping sources, and
results in 1D spectra that have significant covariance with the spectra of their neighbors.

8.4.7 Line-profile fitting & correlation

3D spectroscopy is often used to analyze kinematics. At the root level, this involves extracting and analyzing 1D
spectra of spatial regions within the image, but the desired data product returned to the user is generally not a big table
of numbers, but rather some more informative visualization. Use cases include:

• Fit a Gaussian to and derive centroids and higher order moments of an emission line profile to derive gas
kinematics of emission. The input is a 3-D datacube sub-region. The output is a set of 2-D images that describe
the Gaussian fits, and velocity centroid, dispersion and higher order moments of the profile.

• Fit two Gaussian profiles to an emission line profile to derive gas kinematics of emission. The input is a 3-D
datacube sub-region. The output is two sets of 2-D images that describe the velocity centroid, dispersion and
higher order moments of the profile.

• Fit a user input 1-D spectrum (e.g., instrumental line profile model) to an emission line profile to derive gas
kinematics of the emission. The input is a 3-D datacube sub-region and 1-D spectral template. The output is
two sets of 2-D images that describe the velocity centroid, dispersion and higher order moments of the profile.

• Correlate the IFU datacube to a template spectrum to generate stellar kinematic diagnostics from absorption line
spectra in a continuum source. Inputs are the 3-D datacube region plus a template 1-D spectrum, outputs are
2-D image maps of the velocity and dispersion.

It will clearly be beneficial to have user-friendly GUI-driven tools for this kind of work, layered on top of the simpler
tools that do the spectral extraction and fitting.

8.4.8 Interactive 3D data-cube Vizualization

8.4.9 2D Plotting of 3D data

The 3D-spectroscopy toolbox needs to contain a variety of types of two-dimensional plots. There is a clear need for
interactive plots to work with the data-analysis tools themselves. There is also a clear need for publication-quality
graphics.

Use cases include:

• Create figures using two 2-D images -– e.g. using a continuum emission image, overplot contours from the
other image. User inputs include display levels for image and contour levels and a color table. (This is already
largely doable in the current version of DS9, although it could be made more convenient).

• Create a velocity channel map using a 3-D input cube

• Create a 3-D plot view with parameters from the 3D visualzation tool inputs

• Create a figure presenting multiple 2-D images (not linked in velocity) using input from the 3D visualization
tool.

• Create a plot with multiple 1-D spectra from the 3D visualization tool.

• Create recipes or canned wrapper macros that permit creation of some of these figures with fewer clicks by the
user, and no external saves.

8.4. 3D Spectroscopy 41

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

Most of these plot types are easily supported in matplotlib (in both quicklook and publication-quality forms), so the
software development can be concentrated primarily on providing the linkage to the 3D visualization tool, and on
layers to make use of data models and metadata to put coordinate systems and physical units on the plots.

8.4.10 Derive phyiscal parameters from related spectra

Under Consideration

Deriving physical parameters from spectra was beyond the scope of most IRAF tasks, but is clearly of use to as-
tronomers. The key question is whether tools can be made generic enough that they support a broad community of
users. Specific use cases include:

• Provide the means to take a few inputs — such as emission line images or emission line datacubes -– to derive
physical parameters (i.e., 𝑛𝑒 from [Fe II] line ratio maps or 𝐴𝑣 from H2 line maps).

• Have several canned relations available automatically (such as gas parameters for [Fe II] and H2 line regions, or
common physical parameters derived from optical emission lines in red-shifted galaxies).

8.4.11 Velocity-field fitting

Under Consideration

A fairly common operation in galaxy research is to fit a velocity field with a model (e.g. tilted disks, with or without
constraints on the one-dimensional rotation curve). Ideally, the fitting is done on the ful data cube, but the visual-
ization is on lower-dimensional slices. Tools for such modeling exist, particularly in the radio community. Further
investigation is prudent before developing a new tool.

8.4.12 Catalog overlap

Tools should be provided to ingest catalogs and use them to overlay on 3D data cubes or drive spectral extraction.

8.5 Source extraction, morphology and photometry

Various types of source extraction have already been mentioned above in the imaging and spectroscopy sections. The
toolbox needs to include well-documented tools for the following:

• Aperture photometry

• PSF construction

• PSF-kernel construction for matching images with different resolution

• Multi-band crowded-field photometry with or without positional and flux priors (incorporating priors is an area
of weakness of existing codes).

• Point-source detection in crowded field

• Faint-galaxy source detectection

• Faint-galaxy photometry

• Faint-galaxy morphology

This is an area where very capable tools already exist both inside and outside of IRAF. This includes:

42 Chapter 8. The Computational Toolbox

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

• SExtractor, a stand-alone monolithic C program for faint-galaxy detection and photometry driven by a traditional
parameter-file interface.

• GALFIT for fitting parametric models to galaxy images.

• GALAPAGOS A set of IDL scripts that tie together SExtractor and GALFIT.

• DAOPHOT for crowded-field stellar photometry.

• DOLPHOT for crowded-field stellar photometry.

• DOPHOT for crowded-field stellar photometry.

• MATPHOT for crowded-field stellar photometry.

The stellar-photometry codes all take somewhat different approaches to deriving and parametrizing the PSF and fitting
the PSF to the crowded images. A version of DAOPHOT exists within IRAF.

Because these are very capable (and complex) codes, there is currently not much urgency in the HST+JWST commu-
nity to create new codes. That said, many of these codes are maintained by a single person, with no guarantee they
will be maintained indefinitely, and there are some limitations of current codes.

In summary, these capabilities are needed whether by ensuring maintenance and interoperability with a existing codes,
or developing new tools.

Regardless of whether exiting monolithic packages for doing star and galaxy photometry are supported as part of the
toolset for JWST observers, it would be very valuable to provide modular tools for astronomers to experiment with
new algorithms. The tools for image filtering, segmentation, and morphology within scipy and scikit-image are already
quite powerful, although it is unclear that they would be fast enough for a production environment.

8.6 Simulation

Simulations are absolutely essential for analyzing modern astronomical data. Simulations are the best way to estimate
the the flux biases, uncertainties, selection functions, and completeness of samples of stars or galaxies measured in an
image or a survey. Typically one would like to either construct purely simulated images with realistic simulations of
the S/N, PSF, and instrumental charactiistics, or one would like to insert simulated objects into the real images. To
prevent the uncertainties in the analysis from dominating the final uncertainties, one will typically insert many more
sources into the images than true sources, but do this a few sources at a time to keep the crowding more or less the
same.

In IRAF, simulations have been supported by the ARTDATA, which is flexible and quite fast. This package does not
include tools for modeling model instrument characteristics.

A flexible simulation package should include the following:

• Source shapes (point sources, various galaxy models)

• A library of astronomical source spectra

• The ability to apply an instrumental response function to spectra (e.g. pysynphot)

• Distribution functions to describe populations of sources with varying fluxes or spectral properties (e.g. lumi-
nosity functions)

• Spatial distribution functions

• At a minimum, the ability to convolve with point-spread functions

• Poisson and Gaussian noise models

Certain aspects of this are already supported by pysynphot, which takes input spectra and instrument throughputs and
calculates count rates.

8.6. Simulation 43

http://www.astromatic.net/software/sextractor
http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
http://astro-staff.uibk.ac.at/~m.barden/GALAPAGOS/
http://adsabs.harvard.edu/abs/1987PASP...99..191S
http://americano.dolphinsim.com/dolphot/
https://github.com/AbhijitSaha/DoPhot
http://www.noao.edu/noao/staff/mighell/matphot/
http://iraf.net/irafhelp.php?val=artdata&help=Help+Page
http://stsdas.stsci.edu/pysynphot/

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

A more sophisticated simulation suite would attempt to model the full effects of the environment, optics, and detector.
The LSST Image Simulator, treats each incident photon individually, accounting for the effects of the atmosphere
and optics, non-uniformities in the detectors, charge diffusion, etc. Various proprietary simulators exist for the JWST
instruments, but there are currently no plans to support these for general observers. Nevertheless, it is important to
have reasonably high-fidelity simulations that include the specific characteristics of the instruments in order to develop
the JWST pipeline. It takes more effort to develop these for general use, but they would undoubtedly be useful to many
observers.

It would also be extremely useful for the simulation suite to provide access various kinds of sky models:

• A Milky Way model for star counts

• A Milky Way model for extinction

• A diffuse sky-background model (including zodiacal light, galactic diffuse emission, and extragalactic back-
ground radiation)

• Hertsprung-Russell diagrams and a tool to build stellar populations

• A tool for building synthetic galaxy spectra for an assumed star-formation history and chemical evolution

• Cosmological galaxy-evolution simulations

The situation for these is very similar to that for photometry packages. There are many existing codes that work well
and are widely used in the community. There is thus little pressure to create new codes and at least the initial focus
should be providing access and interoperability.

8.7 Other tools

This section lists other astronomy-specific tools not mentioned above that will be commonly used. Many of these tools
exist in some form in astropy already.

8.7.1 Utilities for reading, writing, and manipulating FITS files and headers

The standard for python has been pyfits for the past few years. This is now incorporated into astropy as astropy.io.fits.
In addition to reading, writing, and creating files, it offers standard pythonic ways of accessing the metadata in the
image headers.

The equivalent of the following IRAF tasks are needed:

• hselect - select files on disk via header keywords using various boolean operations

• hedit - batch editing of keywords

• eheader - an STSDAS task for editing keywords in emacs or vi

When fits IO is needed in C it will be provided by CFITSIO.

8.7.2 Utilities for reading, writing and manipulating tables

Astronomers deal with tabular data constantly. The storage formats includ ASCII files with various formats, FITS,
VO Tables, and databases. For small tables, the routines for manipulating the table and doing operations (plotting
statistics, model fitting, etc.) can be independent of the table format once the table is read in. For large data sets that
do not fit in memory, this is not as straightfoward.

Various utilities exist within python and astropy for dealing with tabular data, all of which have slightly different
purposes:

44 Chapter 8. The Computational Toolbox

http://www.lsst.org/lsst/science/simulations
http://www.stsci.edu/institute/software_hardware/pyfits
http://iraf.net/irafhelp.php?val=hselect&help=Help+Page
http://iraf.net/irafhelp.php?val=hedit&help=Help+Page
http://heasarc.gsfc.nasa.gov/fitsio/

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

• astropy.table,

• pytables,

• pandas.

There is work to be done to improve the convience to astronomers for:

• reading and writting various formats

• dealing with missing data

• dealing with uncertainties

• interpolation (with a rich set of options)

• gridding irregularly sampled data

This is a place where well-designed tools with good documentation and tutorials can save the community a lot of time.

8.7.3 Utilities for dealing with astronomical times and positions

Astropy now includes tools for manipulating world coordinate systems in astropy.wcs. It includes basic functionality
for manipulating times and dates in astropy.time. The open-source pyephem packages is well supported and offers
utilities for time and position as well as for computing epheremerides of the solar-system bodies and satellites.

Under Consideration

Perry include something about SOFA?

If the license on the SOFA astronomy library can be made compatible with the astropy license, then it will be incor-
porated with a python wrapper.

8.7.4 Utilities for model fitting and optimization

This section needs work....

Model fitting is an essential part of the toolbox. It is required in many steps of instrument calibration, as well as in the
analysis and interpretation of science data. It requires both full-featured GUI interfaces that allow data selection and
interactive manipulation of fitting parameters, as well as fast and robust routines that can be used repeatedly in fitting
large data sets.

The tool set should certainly include various kinds of standard functions such as Gaussians and polynomials. Within
IRAF there are ~80 different tasks that involve fitting, from general curve and surface fitting like curfit, polyfit and
imsurfit, to more specialized routines for fitting continuum in spectra, fitting sky background, fitting standard-star
photometry, or fitting ellipses.

The scipy optimize package includes a variety of optimization options. Eric Tollerud, one of the founders of astropy,
has provided a somewhat higher level framework for model fitting, including a customized GUI in PyModelFit.

There are a couple of python versions of Craig Markwardt’s popular IDL fitting library.

8.7. Other tools 45

http://stsdas.stsci.edu/pysynphot/
http://www.pytables.org/moin
http://pandas.pydata.org
http://docs.astropy.org/en/latest/wcs/index.html
http://docs.astropy.org/en/latest/time/index.html
http://rhodesmill.org/pyephem/
http://www.iausofa.org/tandc.html
http://iraf.net/irafhelp.php?val=utilities.curfit&help=Help+Page
http://iraf.net/irafhelp.php?val=utilities.polyfit&help=Help+Page
http://iraf.net/irafhelp.php?val=imsurfit&help=Help+Page
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://pythonhosted.org/PyModelFit/
http://www.physics.wisc.edu/~craigm/idl/

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

46 Chapter 8. The Computational Toolbox

CHAPTER 9

Graphics and Visualization

9.1 2D image display

Probably the most popular 2D image display tool in use by the US community is ds9, from SAO, which is a stand-
alone application actively maintained at SAO. It has the ability to communicate with other tasks using XPA or SAMP.
Other sophisticated image display utilities for astronomical images include:

• Aladin

• ximtool

• GAIA::SkyCat

The default will be to support image tools that communicate using SAMP. SAMP is a message-passing protocol, but
doesn’t specify the functions that should be supported by the tools on either end or how to invoke those functions.
Ds9, for example, has 1150 different xpaget and xpaset commands, supporting 96 different areas of functionality.
It would take a considerable effort to implement all of this functionality afresh in a new tool. Nevertheless there are
some limitations of ds9 that make it worth considering. In particular, it is not particularly fast at loading images or
zooming and panning, and is not designed to deal with very large images that do not fit entirely in memory. Both are
in contrast to many tools available on the web that pan and zoom quite fast in extremely large images.

Because there are good image viewers available, building a new 2D image viewer is not currently a high priority for
STScI. However, it would be very useful to maintain a wish-list of features to include in any such tool (in addition to
supporting all of ds9’s features).

9.2 3D image display

Observers using the MIRI or NIRSpec spectrographs on JWST will need a full-featured 3D image display tool. This
must interact with analysis tools and 2D graphics tools and provide a variety of options for data selection and visual-
ization. Under consideration are:

• ds9

• glue

• join forces with radio astronomers to provide a tool to support both communities.

47

http://hea-www.harvard.edu/RD/ds9/site/Home.html
http://hea-www.harvard.edu/RD/xpa/index.html
http://www.ivoa.net/documents/SAMP/
http://aladin.u-strasbg.fr
http://iraf.noao.edu/iraf/web/projects/x11iraf/ximtool.ps
http://star-www.dur.ac.uk/~pdraper/gaia/gaia.html
http://www.glueviz.org/en/latest/

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

9.3 Interactive 2D & 3D graphics

9.3.1 2D graphics

Within python, the standard is matplotlib, which has had heavy STScI involvement (and some funding) in its devel-
opment. It supports multiple “backends” to build in device and GUI independence. Efforts are underway to make
it possible to plot interactively in a web browser. Most users interact with matplotlib via pyplot, which provides a
MATLAB-like plotting framework.

Relatively certain

For 2D graphics, the plan is to continue to improve matplotlib and use it as the basis for both interactive and
publication-quality graphics.

Under consideration

Matplotlib’s greatest weakness is probably speed, which makes it not particularly suitable to video frame-rate anima-
tions or real-time updates. While most astronomers don’t need these capabilities for day-to-day data analysis, they
are occasionally needed. For speed, it is useful to consider hardware-accelarated graphics, such as that provided by
NodeBox for OpenGL. Another potential weakness of Matplotlib is that it is was not originally engineered to operate
in a web browser. The Bokeh visualization library, under development at Continuum Analytics, aims to implement the
Grammar of Graphics, which has become popular in statistical packages such as R.

There is also some interest in having the capability of making dynamic graphs, such as those provided by the d3
javascript library.

9.3.2 3D graphics

Relatively certain

Matplotlib provides some 3D capabilities within the mplot3d package.

Under consideration

There are other options for 3D visualization as well, including:

• Mayavi

• VPython (licensing issues?).

• PyQtgraph 2D and 3D visualization.

• Mayavi 3D visualization.

• VTK 3D computer graphics with python wrappers.

• Paraview An open-source python-scriptable 3D visualization application aimed at very large datasets.

• yt A volumetric data-analysis program for astrophysical simulations.

48 Chapter 9. Graphics and Visualization

http://matplotlib.org
http://matplotlib.org/api/pyplot_api.html
http://www.cityinabottle.org/nodebox/
http://www.continuum.io/developer-resources
http://www.cs.uic.edu/~wilkinson/TheGrammarOfGraphics/GOG.html
http://www.r-project.org
http://d3js.org
http://d3js.org
http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html
http://www.vpython.org
http://www.pyqtgraph.org
http://docs.enthought.com/mayavi/mayavi/
http://vtk.org
http://http://www.paraview.org
http://yt-project.org

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

9.4 Publication-quality graphics

The plan is to continue to improve matplotlib and use it as the basis for publication-quality graphics.

9.5 Easy-to-construct widgets

9.6 Easy-to-construct web graphics

9.4. Publication-quality graphics 49

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

50 Chapter 9. Graphics and Visualization

CHAPTER 10

Development Timeline

Placeholder

51

JWST Astronomy Data Analysis Tools Roadmap Documentation, Release 0.1

52 Chapter 10. Development Timeline

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

53

	Executive Summary
	The vision
	Guiding principles
	Open Source Software
	Easy to install
	Well documented
	Easy to extend
	Multiple interfaces
	Stable, widely adopted languages
	Stable, widely adopted libraries
	Leverage existing codes & algorithms

	Why do we need new tools?
	Make science more efficient
	Remove scientist dependency on IRAF
	Modern programming language
	Make better use of community code
	Modern algorithms where relevant
	Leverage advances in computer hardware

	Science Use Cases
	Faint Galaxies
	Infrared Slit Spectroscopy of Galactic Objects
	Imaging Young Stellar Objects in the Magellanic Clouds
	Need more use cases

	Technologies and Infrastructure
	Data Formats
	Data Abstraction
	Parameter Handling
	Scientific and Numerical Libraries
	Physical Units and Constants
	Interprocess Communications
	Multiprocessing
	Special-Purpose Hardware
	GUI Frameworks
	Software Distribution
	Documentation
	Testing
	Graphics and Image Displays

	Architecture
	The Computational Toolbox
	General-purpose multi-dimensional Array Analysis tools
	Imaging
	Spectra and Spectral Extraction
	3D Spectroscopy
	Source extraction, morphology and photometry
	Simulation
	Other tools

	Graphics and Visualization
	2D image display
	3D image display
	Interactive 2D & 3D graphics
	Publication-quality graphics
	Easy-to-construct widgets
	Easy-to-construct web graphics

	Development Timeline
	Indices and tables

